
MODULE 3

IMPLEMENTATION AND TESTING

1. Discuss the various ways of identifying various ways of identifying object classes

in object-oriented systems? .

1. Use a grammatical analysis of a natural language description of the system to be constructed.

2. Use tangible entities (things) in the application domain such as aircraft, roles such as manager,

events such as request, interactions such as meetings, locations such as offices, organizational units

such as companies, and so on.

 Use a scenario-based analysis where various scenarios of system use are identified and analyzed in

turn.

2. Explain the importance of design patterns

Pattern → a description of the problem and the essence of its solution, so that the solution may be

reused in different settings.

• not a detailed specification.

• It is a description of accumulated wisdom and experience, a well-tried solution to a common

problem.

Patterns are a way of reusing the knowledge and experience of other designers.

• Design patterns are usually associated with object-oriented design.

• Published patterns often rely on object characteristics such as inheritance and polymorphism to

provide generality.

• General principle of encapsulating experience in a pattern → one that is equally applicable to any

kind of software design.

4 essential elements of design patterns as per Gang of Four’s book on patterns:

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may be applied.

3. A solution description of the parts of the design solution, their relationships and

their responsibilities.

4. A statement of the consequences—the results and trade-offs—of applying the

pattern.

Advantages:

Design patterns can speed up the development process by providing tested, proven

development paradigms. Effective software design requires considering issues that may not

become visible until later in the implementation. Reusing design patterns helps to prevent

subtle issues that can cause major problems and improves code readability for coders and

architects familiar with the patterns.

3. Explain about Open-source licensing? Compare GPL, LGPL and BSD

A fundamental principle of open-source development is that source code should be freely available.

Legally, the developer of the code owns the code. They can place restrictions on how it is used by

including legally binding conditions in an open-source software license

Licensing issues are important because if you use open-source software as part of a software

product, then you may be obliged by the terms of the license to make your own product open

source..

The open-source approach is one of several business models for software.

Most open-source licenses are variants of one of three general models:

1. The GNU General Public License (GPL).

This is a so-called reciprocal license that simplistically means that if you use open-source software

that is licensed under the GPL license, then you must make that software open source.

2. The GNU Lesser General Public License (LGPL).

This is a variant of the GPL license where you can write components that link to open-source code

without having to publish the source of these components. However, if you change the licensed

component, then you must publish this as open source.

3. The Berkley Standard Distribution (BSD) License.

 This is a nonreciprocal license, which means you are not obliged to re-publish any changes

or modifications made to open-source code. You can include the code in proprietary systems that

are sold. If you use open-source components, you must acknowledge the original creator of the

code. eg. The MIT license .

4. What is meant by a code walkthrough? What are some of the important types of errors checked
during code walkthrough?

5. Differentiate between code walk through and code inspection?

Code Walkthrough

 We present the code and accompanying documentation to the review team, and the team

comments on their correctness.

 During walkthrough, we lead and control the discussion. The atmosphere is informal and the

focus of attention is on the code, not the coder.

 Although Supervisory personnel may be present, walkthrough has no influence on the

performance appraisal, consistent with the general intent of testing, finding faults, not fixing

them.

Code Inspection

 Similar to Code walkthrough, but is more formal. In an inspection, review team checks the

code and documentation against a prepared list of concerns.

 For eg: the team may examine the definition and use of data type and structures to see if their

use is consistent with the design and with standards and procedures. The team can review

algorithms and computations for their correctness and efficiency. Interfaces also checked. The

team may estimate the code’s performance characteristics in terms of memory usage or

processing speed.

6. How can you compute the cyclomatic complexity of a program? How is cyclomatic

complexity useful in program testing?

Cyclomatic complexity is a source code complexity measurement that is being correlated to
a number of coding errors. It is calculated by developing a Control Flow Graph of the code
that measures the number of linearly-independent paths through a program module.
Lower the Program's cyclomatic complexity, lower the risk to modify and easier to
understand.
Complexity is a software metric that given the quantitative measure of logical complexity of
the program.
The Cyclomatic complexity defines the number of independent paths in the basis set of the
program that provides the upper bound for the number of tests that must be conducted to
ensure that all the statements have been executed atleast once.
There are three methods of computing Cyclomatic complexities.

• Method 1: Total number of regions in the flow graph is a Cyclomatic complexity.
• Method 2: The Cyclomatic complexity, V (G) for a flow graph G can be defined as V

(G) = E - N + 2 Where: E is total number of edges in the flow graph. N is the total
number of nodes in the flow graph.

• Method 3: The Cyclomatic complexity V (G) for a flow graph G can be defined as V
(G) = P + 1 Where: P is the total number of predicate nodes contained in the flow G.

7. What is black box testing? Explain the different types of black box testing.strategies. For
a software that computes the square root of an input integer that can assume values in the

range of 0 and 1000. Determine the equivalence class test suite.

Black-box testing, also called behavioral testing or functional testing focuses on the functional
requirements of the software. That is, black-box testing techniques enable you to derive sets of input
conditions that will fully exercise all functional requirements for a program

 Black-box testing attempts to find errors in the following categories: (1) incorrect or missing
functions, (2) interface errors, (3) errors in data structures or external database access, (4) behavior or
performance errors, and (5) initialization and termination errors .

Black box testing strategies

Equivalence partitioning divides the input domain into classes of data that are likely to exercise a
specific software function.
Boundary value analysis probes the program’s ability to handle data at the limits of acceptability.
Orthogonal array testing provides an efficient, systematic method for testing systems with small
numbers of input parameters.
Model-based testing uses elements of the requirements model to test the behavior of an application .

• A program reads an input value in the range of 1 and 5000:
o computes the square root of the input number

• There are three equivalence classes:
o the set of negative integers,
o set of integers in the range of 1 and 5000,
o integers larger than 5000.

• The test suite must include:
o representatives from each of the three equivalence classes:
o a possible test suite can be:{-5,500,6000}

10. Discuss software Testing strategies (refer diagram and notes for explanation)

Unit Testing

Unit testing begins at the vortex of the spiral and concentrates on each unit (e.g., component,
class, or WebApp content object) of the software as implemented in source code.

 Testing progresses by moving outward along the spiral to integration testing , where the
focus is on design and the construction of the software architecture.

 Taking another turn outward on the spiral, you encounter validation testing, where
requirements established as part of requirements modeling are validated against the software
that has been constructed.

 Finally, you arrive at system testing, where the software and other system elements are
tested as a whole. To test computer software, you spiral out along streamlines that broaden the
scope of testing with each turn.

 Initially, tests focus each component individually, ensuring that it functions properly as a
unit. Hence, the name unit testing. Unit testing makes heavy use of testing techniques that
exercise specific paths in a component’s control structure to ensure complete coverage and
maximum error detection.

 Next, components must be assembled or integrated to form the complete software package.
Integration testing addresses the issues associated with the dual problems of verification and
program construction. Testcase design techniques that focus on inputs and outputs are more
prevalent during integration, although techniques that exercise specific program paths may be
used to ensure coverage of major control paths.

 After the software has been integrated (constructed), a set of high-order tests is conducted.
Validation criteria (established during requirements analysis) must be evaluated. Validation
testing provides final assurance that software meets all functional, behavioral, and
performance requirements.
 Integration testing

• Top down and bottom up
• Regression Testing

• Smoke Testing

 Validation Testing

• Alpha and Beta testing

 System testing .

• Recovery Testing

• Security Testing
• Stress Testing

• Performance testing

• Deployment testing

11. Explain Topdown and Bottom up integration testing ? (refer notes for more

explanation)Top-down integration testing is an incremental approach to construction of the
software architecture. Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module (main program).

 Modules subordinate (and ultimately subordinate) to the main control module are
incorporated into the structure in either a depthfirst or breadth-first manner. Referring to
Figure below ,depth-first integration integrates all components on a major control path of

the program structure. Selection of a major path is somewhat arbitrary and depends on
application-specific characteristics.

 For example, selecting the left-hand path, components M1, M2 , M5 would be integrated
first. Next, M8 or (if necessary for proper functioning of M2) M6 would be integrated.

 Then, the central and right-hand control paths are built. Breadth-first integration
incorporates all components directly subordinate at each level, moving acrossthe structure
horizontally. From the figure, components M2, M3, and M4 wouldbe integrated first. The
next control level, M5, M6, and so on, follows.

 The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for all
components directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first), subordinate
stubs are replaced one at a time with actualcomponents.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the realcomponent.
5. Regression testing (discussed later in this section) may be conducted to ensure that new
errors have not been introduced.

Bottom-Up Integration. Bottom-up integration testing, as its name implies, begins
construction and testing with atomic modules (i.e., components at the lowest levels in the
program structure). Because components are integrated from the bottom up, the
functionality provided by components subordinate to a given level is always available and
the need for stubs is eliminated. A bottom-up integration strategy may be implemented
with the following steps:
1. Low-level components are combined into clusters (sometimes called builds) that
perform a specific software sub function.

2. A driver (a control program for testing) is written to coordinate test-case input and
output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program
structure

11. Explain basis path testing?

• Basis path testing is a white-box testing technique which enables the test-case

designer to derive a logical complexity measure of a procedural design and use

this measure as a guide for defining a basis set of execution paths. Test cases

derived to exercise the basis set are guaranteed to execute every statement in

the program at least one time during testing.

1. Draw a control graph (to determine different program paths)

2. Calculate Cyclomatic complexity (metrics to determine the number of
independent 3.paths)

4. Find a basis set of paths.

5. Generate test cases to exercise each path.

12. How Black box testing differ from White box testing

S.No Black Box Testing White Box Testing

1 The main objective of this testing is to
test the Functionality / Behavior of the
application.

The main objective is to test the
infrastructure of the application.

S.No Black Box Testing White Box Testing

2 This can be performed by a tester
without any coding knowledge of the
AUT (Application Under Test).

Tester should have the knowledge of
internal structure and how it works.

3 Testing can be performed only using the
GUI.

Testing can be done at an early stage
before the GUI gets ready.

4 This testing cannot cover all possible
inputs.

This testing is more thorough as it can
test each path.

5 Some test techniques include Boundary
Value Analysis, Equivalence Partitioning,
Error Guessing etc.

Some testing techniques include
Conditional Testing, Data Flow Testing,
Loop Testing etc.

6 Test cases should be written based on
the Requirement Specification.

Test cases should be written based on the
Detailed Design Document.

7 Test cases will have more details about
input conditions, test steps, expected
results and test data.

Test cases will be simple with the details
of the technical concepts like statements,
code coverage etc.

8 This is performed by professional
Software Testers.

This is the responsibility of the Software
Developers.

9 Programming and implementation
knowledge is not required.

Programming and implementation
knowledge is required.

10 Mainly used in higher level testing like
Acceptance Testing, System Testing etc.

Is mainly used in the lower levels of
testing like Unit Testing and Integration
Testing.

11 This is less time consuming and
exhaustive.

This is more time consuming and
exhaustive.

12 Test data will have wide possibilities so
it will be tough to identify the correct
data.

It is easy to identify the test data as only a
specific part of the functionality is focused
at a time.

13 Main focus of the tester is on how the
application is working.

Main focus will be on how the application
is built.

14 Test coverage is less as it cannot create
test data for all scenarios.

Almost all the paths/application flow are
covered as it is easy to test in parts.

S.No Black Box Testing White Box Testing

15 Code related errors cannot be identified
or technical errors cannot be identified.

Helps to identify the hidden errors and
helps in optimizing code.

16 Defects are identified once the basic
code is developed.

Early defect detection is possible.

13. Consider the program given below, construct the flow graph and calculate the
cyclomatic complexity .
i = 0;
n=4; //N-Number of nodes present in the graph
while (i<n-1) do
j = i + 1;
while (j<n) do
if A[i]<A[j] then
swap(A[i], A[j]);
end do;
i=i+1;
end do

Mathematical representation:

Mathematically, it is set of independent paths through the graph diagram. The Code
complexity of the program can be defined using the formula –

V(G) = E - N + 2

Computing mathematically,

V(G) = 9 – 7 + 2 = 4

V(G) = 3 + 1 = 4 (Condition nodes are 1,2 and 3 nodes)

Basis Set – A set of possible execution path of a program

1, 7

1, 2, 6, 1, 7

1, 2, 3, 4, 5, 2, 6, 1, 7

1, 2, 3, 5, 2, 6, 1, 7

13. Explain about formal and informal reviews ?

formal technical review (FTR) is a software quality control activity performed by software
engineers (and others). The objectives of an FTR are:
(1) to uncover errors in function, logic, or implementation for any representation of the
software;
(2) to verify that the software under review meets its requirements;
(3) to ensure that the software has been represented according to predefined standards;
(4) to achieve software that is developed in a uniform manner;
(5) to make projects more manageable. In addition, the FTR serves as a training ground,
enabling junior engineers to observe different approaches to software analysis, design, and
implementation. The FTR also serves to promote backup and continuity because a number
of people become familiar with parts of the software.

The FTR is actually a class of reviews that includes walkthroughs and inspections

Code Walkthrough

 We present the code and accompanying documentation to the review team, and the team
comments on their correctness.

 During walkthrough, we lead and control the discussion. The atmosphere is informal and
the focus of attention is on the code, not the coder.

 Although Supervisory personnel may be present, walkthrough has no influence on the
performance appraisal, consistent with the general intent of testing, finding faults, not
fixing them.

Code Inspection

 Similar to Code walkthrough, but is more formal. In an inspection, review team checks
the code and documentation against a prepared list of concerns.

 For eg: the team may examine the definition and use of data type and structures to see if
their use is consistent with the design and with standards and procedures. The team can
review algorithms and computations for their correctness and efficiency. Interfaces also
checked. The team may estimate the code’s performance characteristics in terms of
memory usage or processing speed.

Informal Reviews

 Informal reviews include a simple desk check of a software engineering work product
with a colleague, a casual meeting (involving more than two people) for the purpose of
reviewing a work product

 A simple desk check or a casual meeting conducted with a colleague is a review. However,
because there is no advance planning or preparation, no agenda or meeting structure, and
no follow-up on the errors that are uncovered, the effectiveness of such reviews is
considerably lower than more formal approaches. But a simple desk check can and does
uncover errors that might otherwise propagate further into the software process.

14. Explain about software Evolution Process?

 Software evolution processes depend on

• The type of software being maintained;
• The development processes used;
• The skills and experience of the people involved.
• Proposals for change are the driver for system evolution. Should be linked with

components that are affected by the change, thus allowing the cost and impact of the
change to be estimated.

• Change identification and evolution continues throughout the system lifetime.

15. Write the need for software maintenance. Explain different categories of
Maintenance.

Software maintenance is the process of changing, modifying, and updating software to keep up with
customer needs.

• Maintenance to repair software faults(Corrective Maintenance)
o Changing a system to correct deficiencies in the way meets its requirements.

• Maintenance to adapt software to a different operating environment(adaptive
maintenance)

o Changing a system so that it operates in a different environment (computer,
OS, etc.) from its initial implementation.

• Maintenance to add to or modify the system’s functionality(perfective
Maintenance)

o Modifying the system to satisfy new requirements.

16. Explain about software evolution Process? (refer Notes)

 17. State Lehman’slaws ?

18. Compare Reengineering and Refactoring

Re-engineering takes place after a system has been maintained for some time and

maintenance costs are increasing. You use automated tools to process and reengineering

legacy system to create a new system that is more maintainable.

 Refactoring is a continuous process of improvement throughout the development and

evolution process. It is intended to avoid the structure and code degradation that increases

the costs and difficulties of maintaining a system.

19. Explain about Legacy systems?

 Legacy systems are old systems that are still useful and sometimes critical to business

operations. They may be implemented using outdated languages and technology or may

use other systems that are expensive to maintain.

20. Define Program Evolution dynamics ?

• Program evolution dynamics is the study of the processes of system change.

• After several major empirical studies, Lehman and Belady proposed that there were a

number of ‘laws’ which applied to all systems as they evolved. ²There are sensible

observations rather than laws. They are applicable to large systems developed by large

organizations.

• It is not clear if these are applicable to other types of software system

21. Explain about debugging ? .

Debugging occurs as a consequence of successful testing. That is, when a test case uncovers

an error, debugging is the process that results in the removal of the error.

 Although debugging can and should be an orderly process, it is still very much an

E.1 The Debugging Process

Debugging is not testing but often occurs as a consequence of testing, the debugging

process begins with the execution of a test case.

The debugging process will usually have one of two outcomes:

(1) the cause will be found and corrected or

(2) the cause will not be found. In the latter case, the person performing debugging may

suspect a cause, design a test case to help validate that suspicion, and work toward error

correction in an iterative fashion.

Debugging is the process of finding and resolving defects or problems within a computer
program that prevent correct operation of computer software or a system.

 Debugging has one overriding objective— to find and correct the cause of a software
error or defect.

 The objective is realized by a combination of systematic evaluation, intuition, and luck. In
general, three debugging strategies have been proposed: brute force, backtracking, and

cause elimination. Each of these strategies can be conducted manually, but modern
debugging tools can make the process much more effective.

Debugging Tactics.
 The brute force category of debugging is probably the most common and least efficient

method for isolating the cause of a software error.

 This is the foremost common technique of debugging however is that the least
economical method. during this approach, the program is loaded with print statements to
print the intermediate values with the hope that a number of the written values can
facilitate to spot the statement in error. This approach becomes a lot of systematic with the
utilisation of a symbolic program (also known as a source code debugger), as a result of
values of various variables will be simply checked and breakpoints and watch-points can
be easily set to check the values of variables effortlessly.
Backtracking is a fairly common debugging approach that can be used successfully in

small programs. Beginning at the site where a symptom has been uncovered, the source

code is traced backward (manually) until the cause is found. Unfortunately, as the number

of source lines increases, the number of potential backward paths may become

unmanageably large.

 The third approach to debugging— cause elimination—is manifested by induction or

deduction and introduces the concept of binary partitioning. Data related to the error

occurrence are organized to isolate potential causes.

 A “cause hypothesis”is devised and the aforementioned data are used to prove or

disprove the hypothesis. Alternatively, a list of all possible causes is developed and tests

are conducted to eliminate each. If initial tests indicate that a particular cause hypothesis

shows promise, data are refined in an attempt to isolate the bug.

22..What is DEVOPS ? (refer notes for more explanation)

DevOps (development + operations) integrates development, deployment, and support,
with a single team responsible for all software activities .

23.Discuss the benefits of DEVOPS ?

24. dissuss the code management system in devops (refer notes for more explanation)

25. Explain continous integration development and DEPLOYMENT (CI/CD/CD)

System integration (system building) is the process of gathering all of the elements required in
a working system, moving them into the right directories, and putting them together to create
an operational system. This involves more than compiling the system.

 Continuous integration (CI) means creating an executable version of a software system
whenever a change is made to the repository. The CI tool is triggered when a file is pushed to
the repo. It builds the system and runs tests on your development computer or project
integration server.

23. Explain about Test Driven development?

Test-driven development (TDD) is an approach to program development that is based on
the general idea that we should write an executable test or tests for code that are writing
before you write the code.

 TDD was introduced by early users of the Extreme Programming agile method, but it can
be used with any incremental development approach.

Assume that we have identified some increment of functionality to be implemented.

 Test-driven development relies on automated testing. Every time we add some
functionality, we develop a new test and add it to the test suite.

 All of the tests in the test suite must pass before we move on to developing the next
increment.

 Test-driven development is an approach in which executable tests are written before the
code. Code is then developed to pass the tests.
The benefits of test-driven development are:
1. It is a systematic approach to testing in which tests are clearly linked to
section of the program code.
2. The tests act as a written specification for the program code. In principle at least, it
should be possible to understand what the program does by reading the tests..
3. Debugging is simplified because, when a program failure is observed, you can
immediately link this to the last increment of code that you added to the system

24. Explain about Test documentation ?
Documentation testing can be approached in two phases.

• The first phase, technical review examines the document for editorial clarity.
• The second phase, live test, uses the documentation in conjunction with the

actual program.
Surprisingly, a live test for documentation can be approached using techniques that are
analogous to many of the black-box testing methods discussed earlier.
 Graph-based testing can be used to describe the use of the program;
equivalence partitioning and boundary value analysis can be used to define various classes of
input and associated interactions.
 MBT can be used to ensure that documented behavior and actual behavior coincide.
Program usage is then tracked through the documentation.

24. Explain about Test Automation?

